首页> 外文OA文献 >A front-page news-selection algorithm based on topic modelling using raw text
【2h】

A front-page news-selection algorithm based on topic modelling using raw text

机译:基于原始文本的主题建模的首页新闻选择算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Front-page news selection is the task of finding important news articles in news aggregators. In this study, we examine news selection for public front pages using raw text, without any meta-attributes such as click counts. A novel algorithm is introduced by jointly considering the importance and diversity of selected news articles and the length of front pages. We estimate the importance of news, based on topic modelling, to provide the required diversity. Then we select important documents from important topics using a priority-based method that helps in fitting news content into the length of the front page. A user study is subsequently conducted to measure effectiveness and diversity, using our newly-generated annotation program. Annotation results show that up to seven of 10 news articles are important and up to nine of them are from different topics. Challenges in selecting public front-page news are addressed with an emphasis on future research. © Chartered Institute of Library and Information Professionals.
机译:头版新闻选择是在新闻聚合器中查找重要新闻文章的任务。在本研究中,我们使用原始文本检查公共首页的新闻选择,而没有诸如点击计数之类的元属性。通过共同考虑所选新闻的重要性和多样性以及首页的长度,提出了一种新颖的算法。基于主题建模,我们估计新闻的重要性,以提供所需的多样性。然后,我们使用基于优先级的方法从重要主题中选择重要文档,该方法有助于使新闻内容适合首页的长度。随后,使用我们新生成的注释程序进行了一项用户研究,以评估有效性和多样性。注释结果显示,十篇新闻文章中有多达七篇是重要文章,而其中九篇来自不同主题。在选择公共头版新闻方面面临的挑战以未来的研究为重点。 ©特许图书馆和信息专业人员学会。

著录项

  • 作者

    Toraman C., Can F.;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号